700

Mixed Valence Manganese-(u, u) and -(u, v) Dinuclear Complexes: Preparation, Structure, Magnetochemistry, and E.S.R. Spectra of Mn₂(biphen)₂(biphenH)(bpy)₂ and Mn₂O₂Cl₂(OAc)(bpy)₂ (biphenH₂ = 2,2'-biphenol, bpy = 2,2'-bipyridine)

John S. Bashkin,^a Ann R. Schake,^a John B. Vincent,^a H.-R. Chang,^b Qiaoying Li,^b John C. Huffman,^a George Christou,^{*a} and David N. Hendrickson^{*b}

^a Department of Chemistry and the Molecular Structure Centre, Indiana University, Bloomington, IN 47405, U.S.A. ^b School of Chemical Sciences, University of Illinois, Urbana, IL 61801, U.S.A.

The preparation and properties of two new mixed valence Mn complexes, $Mn_2(biphen)_2(biphenH)(bpy)_2$ (3) and $Mn_2O_2Cl_2(OAc)(bpy)_2$ (2) (bpy = 2,2'-bipyridine, biphenH₂ = 2,2'-biphenol) are reported; complex (3) has a rare S = 9/2 ground state confirmed by magnetization studies.

The realization that a number of biological molecules contain Mn atoms in higher (\ge II) oxidation states has prompted much research into the chemistry of this metal with biologically relevant oxidation levels and ligands. Of particular topical interest are the photosynthetic water oxidation enzyme¹ and the bacterial pseudocatalase² which contain 2–4 and 2 Mn atoms, respectively. To date we have concentrated mainly on tri- and tetra-nuclear species,^{3,4} but we herein describe two new mixed valence dinuclear Mn complexes together with their interesting magnetic and e.s.r. properties.

A stirred slurry of 'Mn(OAc)₃·2H₂O' (4.0 mmol) in MeCN (200 ml) was treated under N₂ with Me₃SiCl (6.0 mmol, added dropwise), followed by addition of 2,2'-bipyridine (bpy) (4.5 mmol) in MeCN (25 ml). The resulting deep red-brown solution was separated by filtration from a tan precipitate giving analytical data consistent with MnCl₂(bpy) (1).⁺ The filtrate yielded, after 2 days, red-brown crystals of [Mn₂-O₂Cl₂(OAc)(bpy)₂]·2MeCN (2).⁺ The structure of (2) was

determined by X-ray crystallography[‡] (Figure 1). The molecule contains an $[Mn_2(\mu-O)_2(\mu-OAc)]^{2+}$ core, with each Mn terminally co-ordinated to a Cl atom and a bpy group completing distorted octahedral geometry. The complex is mixed valence (Mn^{III}Mn^{IV}), with Mn(1) assigned as the Mn^{III}

‡ Crystal Data for (2): $C_{26}H_{25}N_6O_4Cl_2Mn_2$, $M_r = 666.31$, monoclinic, space group Cc, Z = 4, a = 11.798(4), b = 30.354(13), c = 10.014(3) Å, β = 125.45(1)°, U = 2921.27 Å³, T = -155 °C.

For (3): $C_{59}H_{47}N_4O_6Cl_6Mn_2$, $M_r = 1230.63$, monoclinic, space group $P2_1/c$, Z = 4, a = 13.373(5), b = 10.508(4), c = 39.005(22) Å, $\beta = 90.65(2)^\circ$, U = 5480.59 Å³, T = -155 °C.

Data (Mo- K_{α} radiation) were collected in the range $6 \le 2\theta \le 45^{\circ}$. The structures were solved by a combination of direct methods (MULTAN) and Fourier techniques, and refined by full-matrix least-squares. All non-hydrogen atoms were refined with anisotropic thermal parameters. A total of 1756 $[F > 3\sigma(F)]$ and 2607 $[F > 2.33\sigma(F)]$ unique reflections were refined to $R(R_w)$ values of 3.81 (3.77) and 7.19 (6.83), for (2) and (3), respectively. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

[†] Satisfactory elemental analyses have been obtained.

Figure 1. ORTEP projection of (2) at the 50% probability level. Selected bond distances (Å) and angles (degrees): $Mn(1) \cdots Mn(2)$ 2.6674(18), Mn(1)-Cl(3) 2.3265(26), Mn(1)-O(5) 1.827(5), Mn(1)-O(6) 1.843(5), Mn(1)-O(7) 2.203(6), Mn(1)-N(11) 2.106(7), Mn(1)-N(22) 2.155(8), Mn(2)-Cl(4) 2.3414(26), Mn(2)-O(5) 1.805(6), Mn(2)-O(6) 1.793(5), Mn(2)-O(9) 2.047(6), Mn(2)-N(23) 2.092(7), Mn(2)-N(34) 2.050(8) Å; Mn(1)-O(5)-Mn(2) 94.52(25), Mn(1)-O(6) 83.15(24), O(5)-Mn(2)-O(6) 85.22(24)°.

centre, based on inspection of structural parameters which indicate a trapped valence situation akin to that in $[Mn_2O_2(bpy)_4]^{3+}$ to which (2) bears some structural correspondence.⁵ The extremely rare $[Mn_2O_2(OAc)]^{2+}$ bridging unit⁶ has a Mn · · · Mn separation of 2.667(2) Å, similar to that deduced by EXAFS studies to be present in the photosynthetic water oxidation enzyme [2.69(3) Å].⁷ The terminal Cl groups in (2) suggest that potentially useful ligand substitution reactions at these positions may be possible, a matter currently under investigation. The isolation of (2) from a reaction mixture containing only Mn^{III} indicates that a disproportionation occurred, and the isolated yields of (2) and (1) correspond to 40 and 80%, respectively, of those predicted by equation (1).

$$3 \operatorname{Mn^{III}} \rightarrow \operatorname{Mn^{III}} \operatorname{Mn^{IV}} + \operatorname{Mn^{II}} (1)$$
(2) (1)

A brown solution of (Et₃NH)₂[Mn^{III}(biphen)₂(biphenH)] $(0.31 \text{ mmol})^8$ in CH₂Cl₂ (20 ml) was treated with solid bpy (0.96 mmol) to give a black solution. Layering with hexanes and storage at -20 °C (2 weeks) gave [Mn₂(biphen)₂(biphenH)(bpy)₂]·3CH₂Cl₂ (3) \dagger (Figure 2). The Mn atoms are bridged by two oxygen atoms from two biphen groups whose other oxygen atoms bind terminally to Mn(2). Octahedral co-ordination to Mn(2) is completed by a bpy group. Ligation to Mn(1) is completed by a bpy and a monodentate biphenH whose second oxygen atom, O(68), is protonated and hydrogen bonded to $O(55) [O(68) \cdot \cdot \cdot O(55) 2.493 \text{ Å}]$. Mn(1) is thus five co-ordinate and approximately square pyramidal with O(55) at the apex. Complex (3) is again mixed-valence (MnII, MnIII)§ and Mn(1) is assigned as the MnII site on consideration of structural parameters. Mn(2) also shows the Jahn-Teller distortion expected for Mn^{III} (d⁴) with O(41) and

Figure 2. Structure of (3). Selected bond distances (Å) and angles (degrees): Mn(1)-O(27) 2.124(10), Mn(1)-O(41) 2.112(10), Mn(1)-O(55) 2.037(11), Mn(1)-N(3) 2.237(13), Mn(1)-N(14) 2.219(13), Mn(2)-O(27) 1.956(10), Mn(2)-O(40) 1.878(10), Mn(2)-O(41) 2.134(10), Mn(2)-O(54) 1.866(10), Mn(2)-N(15) 2.268(12), Mn(2)-N(26) 2.130(13) Å; Mn(1)-O(27)-Mn(2) 102.4(4), Mn(1)-O(41)-Mn(2) 97.1(4), O(27)-Mn(1)-O(41) 78.0(4), O(27)-Mn(2)-O(41) 81.3(4), O(55)-Mn(1)-O(41) 106.1(4), O(55)-Mn(1)-N(14) 114.6(5), O(27)-Mn(2)-O(54) 171.2(5), O(40)-Mn(2)-N(26) 164.8(5); $O(41)-Mn(2)-N(15) 166.5(4)^\circ$.

N(15) occupying axial positions. The Mn(1) \cdots Mn(2) distance is 3.182(6) Å.

Variable-temperature solid-state magnetic susceptibility studies were performed on powdered samples of (2) and (3) in the range 5—300 K. The effective magnetic moment (μ_{eff}) of (2) varies gradually from 3.24 $\mu_{\rm B}$ per Mn₂ at 301 K to 2.40 $\mu_{\rm B}$ at 91 K, below which μ_{eff} changes only slightly, reaching 2.35 $\mu_{\rm B}$ at 5 K. These data were fitted to the expression for an isotropic exchange interaction between an Mn^{III} ($S_1 = 2$) and an Mn^{IV} ($S_2 = 3/2$) ion to give an exchange parameter of J - 114 cm⁻¹ ($\dot{H} = 2J\hat{S}_1\cdot\hat{S}_2$). The antiferromagnetic interaction is somewhat weaker than found in other [Mn₂O₂]³⁺-containing complexes (|J| 148—220 cm⁻¹).^{6,9}

For compound (3), μ_{eff} per Mn₂ increases gradually from 7.82 $\mu_{\rm B}$ at 302 K to 9.19 $\mu_{\rm B}$ at 5 K. The data were fitted to the expression for an isotropic exchange interaction between an Mn^{II} ($S_1 = 5/2$) and an Mn^{III} ($S_2 = 2$) ion. The ferromagnetic interaction in (3) is characterized by J + 0.89 cm⁻¹. The complex has a resulting S = 9/2 ground state; this was confirmed by determining magnetization vs. H/T data. The external field was maintained at four different values in the range 10–43.5 kG, and at each field the temperature was varied in the range 1.7–40 K. The M vs. H/T plot shows a saturation value of 9.3 $\mu_{\rm B}$. The data fit well to an S = 9/2 Brillouin function.

The few other dinuclear Mn^{II}Mn^{III} complexes which have been structurally characterized also contain μ -phenoxide bridges, but all have weakly antiferromagnetic interactions (|J| 1.7–7.7 cm⁻¹).¹⁰

Variable-temperature X-band e.s.r. spectra were run for powdered samples and glasses of (2) and (3). A microcrystalline sample of (2) showed only a g = 2 feature at 77 K or below, in agreement with the susceptibility data which show that (2) is totally in its S = 1/2 ground state in this temperature range. An EtOH glass at ~7 K gives a g = 2 signal structured

[§] The high yield of isolated (3) (90%) argues against a disproportionation to yield Mn^{n} and for metal reduction by excess biphenoxide.

with 16 Mn hyperfine lines¶ as seen in an isolated form of *Thermus thermophilus* catalase.¹¹ The 7.5 K powder spectrum of (3) exhibits an intense signal at $g \approx 5.0$ and a weaker signal at g = 1.98. A CH₂Cl₂-toluene glass at 7.5 K exhibits a moderate-intensity signal at g = 12.0, a strong Mn-hyperfine-structured signal at g = 5.1, and weaker signals at g = 2.01 and 1.47. These various features are probably explicable only in terms of the S = 9/2 ground state which experiences a small zero-field splitting.

This work was supported by N.S.F. (G. C.) and N.I.H. (D. N. H.).

Received, 19th January 1988; Com. 8/00198G

References

- 1 J. Asmez, Biochim. Biophys. Acta, 1983, 726; G. C. Dismukes, Photochem. Photobiol., 1986, 43, 99.
- 2 Y. Kono and I. Fridovich, J. Biol. Chem., 1983, 258, 6015; W. F. Beyer, Jr., and I. Fridovich, Biochemistry, 1985, 24, 6460.
- 3 J. B. Vincent, H.-R. Chang, K. Folting, J. C. Huffman, G. Christou, and D. N. Hendrickson, J. Am. Chem. Soc., 1987, 109, 5703.

¶ Weak broad signals are also seen at \sim 700, \sim 2000, and \sim 4500 G which, at this stage, are attributable to reaction of (3) with the EtOH solvent or impurities therein. Further studies are in progress to clarify this.

- 4 J. B. Vincent, C. Christmas, J. C. Huffman, G. Christou, H.-R. Chang, and D. N. Hendrickson, J. Chem. Soc., Chem. Commun., 1987, 236; C. Christmas, J. B. Vincent, J. C. Huffman, G. Christou, H.-R. Chang, and D. N. Hendrickson, *ibid.*, p. 1303; J. S. Bashkin, W. E. Streib, J. C. Huffman, H.-R. Chang, D. N. Hendrickson, and G. Christou, J. Am. Chem. Soc., 1987, 109, 6502.
- 5 P. M. Plaskin, R. C. Stoufer, M. Mathew, and G. J. Palenik, J. Am. Chem. Soc., 1972, 94, 2121.
- 6 The only other example is [Mn₂O₂(OAc)(tacn)₂]²⁺ (tacn = 1,4,7-triazacyclononane) which is also trapped-valence but disordered about an imposed two-fold axis: K. Wieghardt, U. Bossek, L. Zsolnai, G. Huttner, G. Blondin, J.-J. Girerd, and F. Babonneau, J. Chem. Soc., Chem. Commun., 1987, 651.
- 7 V. K. Yachandra, R. D Guiles, A. McDermott, R. D. Britt, S. L. Dexheimer, K. Sauer, and M. P. Klein, *Biochim. Biophys. Acta*, 1986, 850, 324.
- 8 A. R. Schake, J. B. Vincent, J. C. Huffman, and G. Christou, unpublished results.
- 9 M. Stebler, A. Ludi, H.-B. Bürgi, *Inorg. Chem.*, 1986, 25, 4743;
 S. R. Cooper, G. C. Dismukes, M. P. Klein, and M. Calvin, *J. Am. Chem. Soc.*, 1978, 100, 7248.
- H. Diril, H.-R. Chang, X. Zhang, S. K. Larsen, J. A. Potenza, C. G. Pierpont, H. J. Schugar, S. S. Isied, and D. N. Hendrickson, J. Am. Chem. Soc., 1987, 109, 6207; H.-R. Chang, S. K. Larsen, P. D. W. Boyd, C. G. Pierpont, and D. N. Hendrickson, *ibid.*, submitted for publication; H.-R. Chang, H. Diril, M. J. Nilges, X. Zhang, J. A. Potenza, H. J. Schugar, D. N. Hendrickson, and S. S. Isied, *ibid.*, 1988, 110, 625.
- 11 S. V. Khangulov, V. V. Barynin, V. R. Melik-Adamyan, A. I. Grebenko, N. V. Voevodskaya, L. A. Blyumenfel'd, S. N. Dobryakov, and V. B. Ilyasova, *Bioorg. Khim.*, 1986, **12**, 741.